New Paradigm for Stroke Prevention in Atrial Fibrillation

Combination systemic and mechanical therapy

Professor Jeff Healey

Population Health Research Institute, McMaster University

Declaration of Interests: Jeff Healey

- Research grants and speaking fees from
 - Medtronic, Boston Scientific
 - BMS/Pfizer
- Scientific advisory board
 - Boston Scientific

Stroke Prevention in AF: The Present

- Oral anticoagulants can prevent >65% of strokes in individuals with AF
 - Limited by 30-50% permanent discontinuation by 2-3 years
 - Medication often stopped due to minor bleeding
- Additional stroke prevention through BP reduction and treatment of other CV conditions

Emerging evidence that rhythm control may further reduce stroke risk

Stroke Prevention in AF: The Future?

- 1. New approaches to stroke prevention with less bleeding
 - New OAC drugs with less bleeding and greater persistence OAC (fXIa inhibitors)
 - LAA closure Devices (CLOSURE-AF, CHAMPION, AMULET)
- 2. Rhythm control and risk factor clinical trials
 - EAST-HIGH, EAST-STROKE, OCEAN, etc.
 - RASTA
- 3. Combination stroke-prevention therapy in the highest risk individuals
 - LAA closure, carotid filters
 - ELAPSE, LAAOS-4, Intercept

Reasons why DOAC does not prevent all strokes

- Temporary and permanent discontinuation
 - Permanent discontinuation remains 30-50% at 2-3 years
 - 25% of all patients interrupt DOAC for surgery/procedures within 2 years (RELY)
- Compliance/adherence
 - Must take all dose, as directed (e.g. with food), at indicated dose
- Some strokes not prevented by DOAC (e.g. lacunar infarcts, atheroemboli)

Despite NOAC Adoption and Ability to Switch NOACs, Adherence to Anticoagulation Remains a Challenge

~30% of NOAC patients stop taking any drug at 2 years

US Perspective:

Total AF Population

5 Million Patients

NVAF (95%

4.75 Million Patients

CHA₂DS₂VASc ≥2 (75%)

3.56 Million Patients

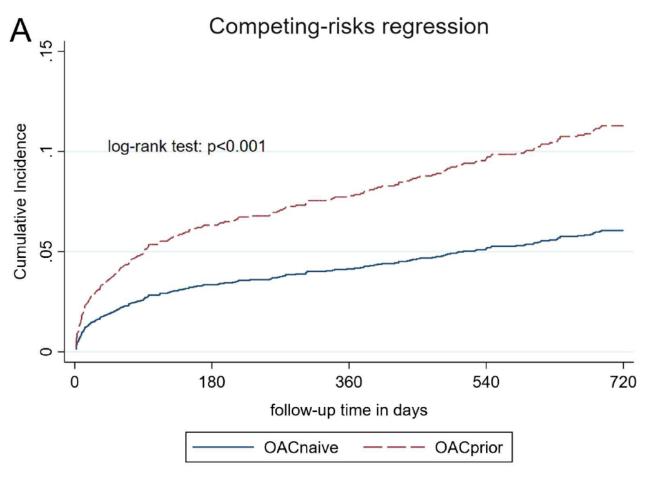
OAC Intolerant (35%)

1.25 Million Patients

RESIDUAL RISK Ischemic Stroke/SE on DOAC

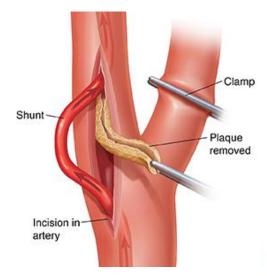
Persistent and Permanent AF N=54,857, COMBINE-AF Meta-Analysis

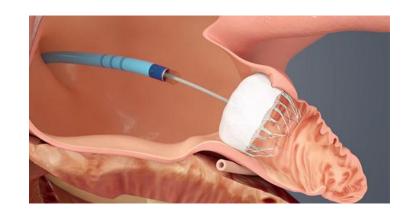
LB Johnson, JAHA 2024


CHA ₂ DS ₂ -VASc score	
2 (n=7,978)	0.61 (0.50-0.74)
3 (n=13,062)	1.06 (0.95-1.19)
4 (n=14,169)	1.51 (1.38-1.66)
5 (n=10,682)	2.04 (1.86-2.23)
6 (n=5,773)	2.71 (2.43-3.02)
7 (n=2,420)	2.90 (2.46-3.02)

25% of all AF patients have persistent/permanent AF and CHA2DS2-VASc score of ≥4

Stroke risk very high in AF patients with prior stroke


Both Groups had Median CHADS-VASc Score of 5 (4-6)

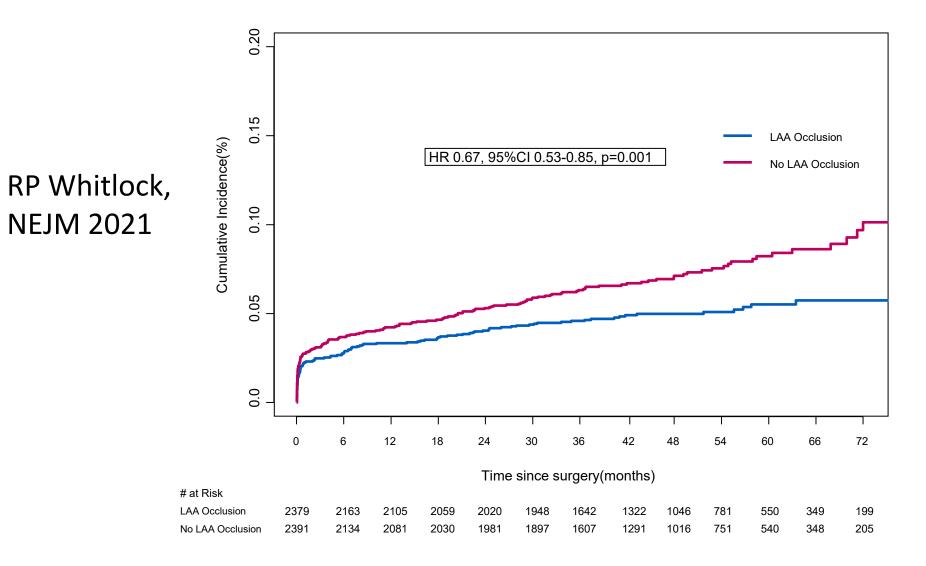


CENTRAL ILLUSTRATION Subgroup Analyses for Left Atrial Thrombus Prevalence in Anticoagulated Patients With Atrial Fibrillation/Atrial Flutter

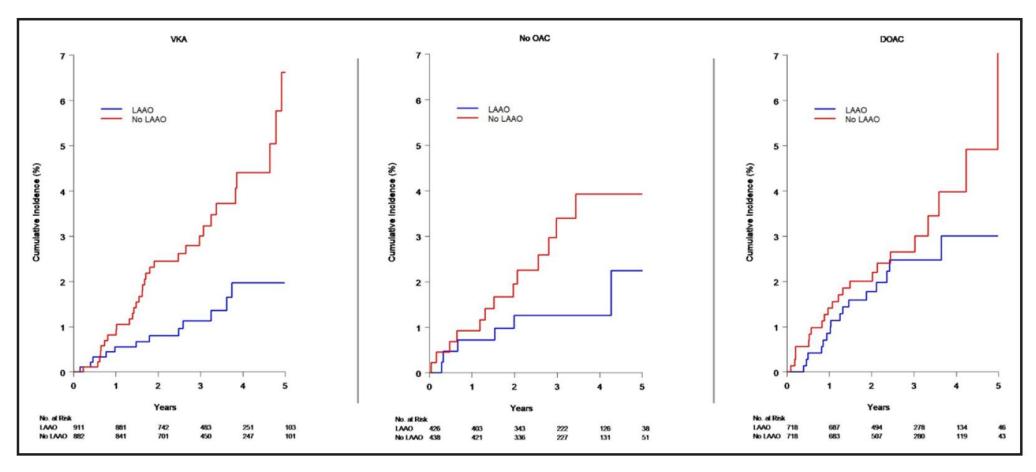
Subgroup	Studies	Patients	Pooled LAT Prevalence (95% CI)	p Value*
Overall	35	14,653	2.73 (1.95-3.80)	
OAC Type				0.674
VKA	23	7,759	2.80 (1.86-4.21)	
DOAC	20	5,042	3.12 (1.92-5.03)	
AF Pattern				<0.001
Paroxysmal	17	3,987	1.03 (0.52-2.03)	
Nonparoxysmal	24	4,102	4.81 (3.35-6.86)	
TEE Indication				<0.001
CA	19	9,164	1.65 (1.07-2.53)	
CV	8	1,615	5.55 (3.15-9.58)	
CHADS ₂ Score				<0.001
≤1	8	3,456	0.82 (0.37-1.82)	
≥2	8	1,038	4.24 (1.94-8.99)	
CHA ₂ DS ₂ -VASc Score			<0.001	
≤2	8	2,242	1.06 (0.45-2.49)	
≥3	8	1,560	6.31 (3.72-10.49)	
			0 2 4 6 8 10 12	
Prevalence (%)				



LAAOSMM


Left Atrial Appendage Occlusion Study 4

Combination Medical and Mechanical Therapy


LAAOS-3: Stroke or Systemic Embolism

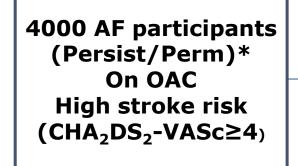
Oral Anticoagulation Use and Left Atrial Appendage Occlusion in LAAOS III

Stuart J. Connolly MD; Jeff S. Healey, MD; Emilie P. Belley-Cote, MD, PhD; Kumar Balasubramanian, MSc; Domenico Paparella, MD; Katheryn Brady; Wilko Reents, MD; Bernhard C. Danner, MD; P.J. Devereaux, MD, PhD; Mukul Sharma, MD; Chinthanie Ramasundarahettige; Salim Yusuf, DPhil; Richard P. Whitlock, MD, PhD

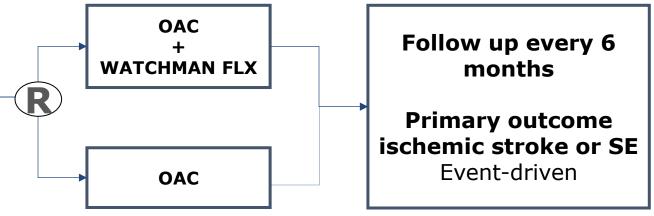
Circulation 2023

Rationale for LAAOS-4: Overview of Key Points

1. About <u>25%</u> of all AF patients have non-paroxysmal AF and CHA₂DS₂-VASc score of ≥ 4


2. Their residual stroke risk is **2.0%** per year; approximately 10% at 5 years

3. Based on LAAOS-3, LAAO with Watchman-FLX is likely to reduce this risk by 30-40%



LAAOS-4 Design

*paroxysmal if prior stroke or SE

Two and a half years enrolment — Three years further follow up (event driven) Patients in both groups remain on OAC throughout.