
GREAT DEBATES

Device-detected or clinically diagnosed AF: the same decision for oral anticoagulation-

William F. McIntyre MD PhD FRCPC

August 31, 2025

WF McIntyre MD PhD FRCPC

Disclosures

Speaking:
iRhythm
Consulting:
Atricure

Peer Reviewed Grants and Salary Support:
Heart and Stroke Foundation of Canada
Population Health Research Institute
Canadian Institutes of Health Research

ORIGINAL RESEARCH ARTICLE

Direct Oral Anticoagulants for Stroke Prevention in Patients With Device-Detected Atrial Fibrillation: A Study-Level Meta-Analysis of the NOAH-AFNET 6 and ARTESiA European Heart Journal (2024) 90, 1-15 European Society https://doi.org/10.1093/eurheart/jehae596

FASTTRACK - CLINICAL RESEARCH

Arrhythmias

William F. McIntyre, MD, PhD; Alexander P. Benz, MD, MSc; Nina Becher, N Christopher B. Granger, MD; Lena Rivard, MD, MSc, A. John Camm, MD; A Marco Alings, MD, PhD; Stuart J. Connolly, MD MSc; Paulus Kirchhof, MD;

Anticoagulation in device-detected atrial fibrillation with or without vascular disease: a combined analysis of the NOAH-AFNET 6 and ARTESiA trials

Outcomes and Management of Trigg Atrial Fibrillation

JACC State-of-the-Art Review

Julian S. Haimovich, MD, A.b.C. Shinwan Kany, MD, MSC A.D. Ezimamaka Ajuro, MD, A.C. Jaso Emelia J. Benjamin, MD, ScM, h.i.j.k Jeffrey S. Healey, MD, Paulus Kirchhof, MD, MD, MBS, William F. McIntyre, MD Michiel Rienstra, MD, PhD, MYA, Prashanthan Sandor, MBBS, Renate B. Schnabel, MD, MD, Patrick T. Ellinon, MD, PhD, A.b.O Shaan Khurshid, MD, MPH

Renate B. Schnabel (1,2,3), Juan Benezet-Mazuecos (1,4), Nina Becher (1,2), William F. McIntyre Alexander Fierenz (1,6), Shun Fu Lee (1,7), Andreas Goette^{8,9}, Dan Atar (1,6), Emanuele Bertaglia¹¹, Alexander P. Benz^{5,12}, Gregory Chlouverakis (1,6) (1,7), A. John Camm (1,6) (1,6), Frantiello (1,6), Carina Blomstrom-Lundqvist^{16,17}, A. John Camm (1,6) (1,6), Julia W. Erath¹⁹, Emmanuel Simantirakis (1,6) (1,6), Valentina Kutyifa (1,6) (1,7), Gregory Y. H. Lip^{22,23}, Philippe Mabo²⁴, Eloi Marijon (1,6) (1,6), Lena Rivard (1,6), Ulrich Schotten (1,6), Marco Alings²⁸, Susanne Sehner (1,6), Tobias Toennis (1,6), Cecilia Linde (1,6), Panos Vardas^{20,30}, Christopher B. Granger³¹, Antonia Zapf (1,6), Renato D. Lopes³², Jeff S. Healey (1,6), and Paulus Kirchhof (1,2,3,33)*

Efficacy and safety of direct oral anticoagulants in patients with device detected atrial fibrillation with and without dose reduction criteria: a pooled analysis of ARTESIA and NOAH-AFNET 6

Authors

WF Mcintyre¹, N Besner², AP Benz¹, T Toennis², A Goette³, CB Granger⁴, A Fierenz², A Zapf², R Mian¹, RD Lopes⁴, S Healey¹, P Kirchhof², ¹Population Health Research Institute

Hamilton Canada, ²University Heart and Vascular Centre Hamburg (UHZ) - Hamburg - Germany, ³Saint Vincenz Hospital Paderborn - Paderborn - Germany, ⁴Duke Clinical Research

Institute - Durham - United States of America,

ESC Congress World Congress of Cardiology

Great Debates: stroke prevention in specific clinical scenarios

📆 31 August from 08:15 to 09:45

○ Paris(Hall 4) ☐ Great Debates Stroke in Atrial Fibrillation

08:15

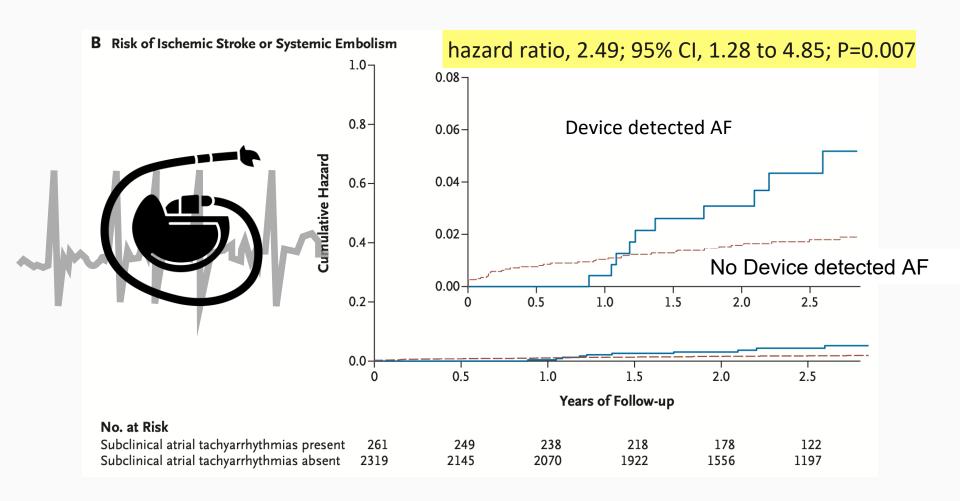
Device-detected or clinically diagnosed atrial fibrillation: the same decision for oral anticoagulation therapy - pro

Speaker: William McIntyre (Population Health Research Institute - Hamilton, Canada) X WFMMD

Device-detected or clinically diagnosed atrial fibrillation: the same decision for oral anticoagulation therapy - con Speaker: Paulus Kirchhof (University Heart and Vascular Centre Hamburg (UHZ) - Hamburg, Germany) X UCCS_HH,

Tarragona, Spain August 2025

OAC for device-detected AF? The Issues


1. Are patients with device-detected AF at risk of stroke?

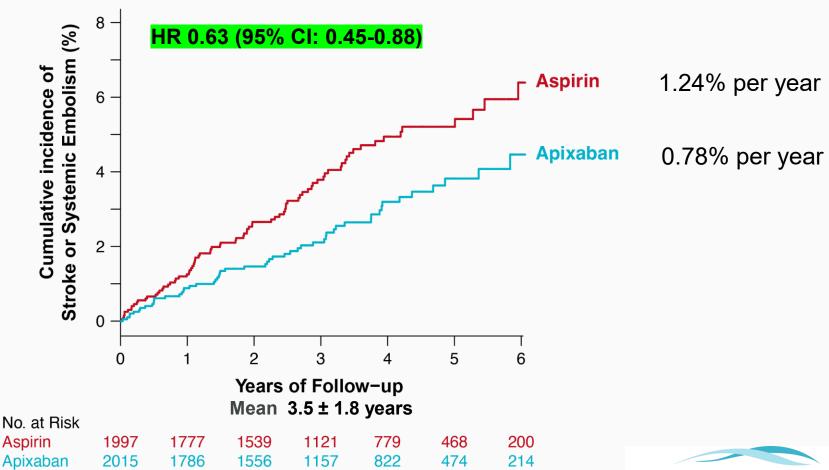
2. Does OAC reduce stroke in these patients?

3. Is the risk of stroke sufficiently high to justify OAC?

4. Is the bleeding risk acceptable?

Device-detected AF increases the risk of stroke

OAC for device-detected AF? The Issues

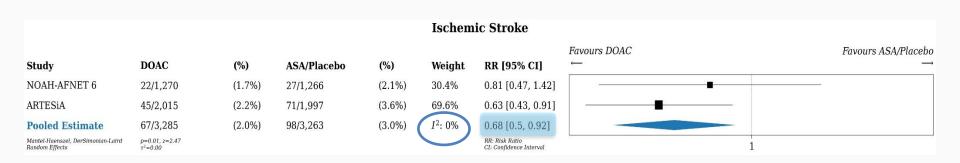

1. Are patients with device-detected AF at risk of stroke? YES

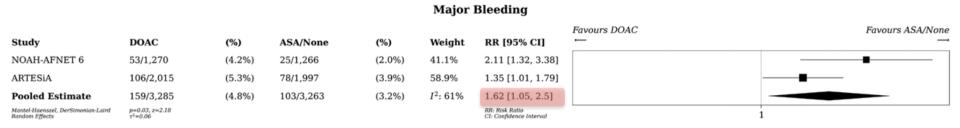
2. Does OAC reduce stroke in these patients?

3. Is the risk of stroke sufficiently high to justify OAC?

4. Is the bleeding risk acceptable?

Apixaban Reduces Stroke in Device-detected AF




ORIGINAL RESEARCH ARTICLE

Direct Oral Anticoagulants for Stroke Prevention in Patients With Device-Detected Atrial Fibrillation: A Study-Level Meta-Analysis of the NOAH-AFNET 6 and ARTESiA Trials

ORIGINAL ARTICLE

Anticoagulation with Edoxaban in Patients with Atrial High-Rate Episodes

P. Kirchhof, T. Toennis, A. Goette, A.J. Camm, H.C. Diener, N. Becher, E. Bertaglia,
C. Blomstrom Lundqvist, M. Borlich, A. Brandes, N. Cabanelas, M. Calvert,
G. Chlouverakis, G.-A. Dan, J.R. de Groot, W. Dichtl, B. Kravchuk, A. Lubiński,
E. Marijon, B. Merkely, L. Mont, A.-K. Ozga, K. Rajappan, A. Sarkozy, D. Scherr,
R. Sznajder, V. Velchev, D. Wichterle, S. Sehner, E. Simantirakis, G.Y.H. Lip,
P. Vardas, U. Schotten, and A. Zapf, for the NOAH-AFNET 6 Investigators*

The primary efficacy outcome was a composite of:

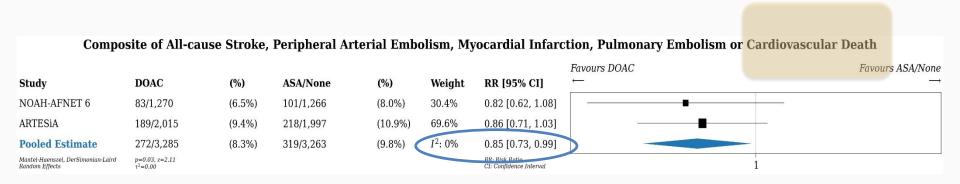
- cardiovascular death
- stroke
- systemic embolism

In AF Patients, A Minority of Deaths are From DOAC Responsive Conditions

TABLE 2 Descriptive Analysis of Causes of Death as Total Numbers an	d as
Percentage of Total Deaths	

Cause of Death	All Patients	DOAC	Warfarin
All-cause death	6,206 (100)	3,579 (100)	2,627 (100)
Vascular death	3,970 (64)	2,297 (64)	1,673 (64)
Cardiac death	2,855 (46)	1,699 (47)	1,156 (44)
Sudden death/dysrhythmia	1,759 (28)	1,044 (29)	715 (27)
Heart failure	922 (15)	547 (15)	375 (14)
Myocardial infarction	174 (3)	108 (3)	66 (3)
Ischemic stroke/SE*	356 (6)	206 (6)	150 (6)
Hemorrhage (all)	350 (6)	148 (4)	202 (8)
Hemorrhagic stroke	202 (3)	77 (2)	125 (5)
Other intracranial hemorrhage	63 (1)	28 (1)	35 (1)
Extracranial hemorrhage	85 (1)	43 (1)	42 (2)
Other vascular death†	409 (7)	244 (7)	165 (6)
Nonvascular death	1,849 (30)	1,103 (31)	746 (28)
Malignancies	706 (11)	441 (12)	265 (10)
Infections	533 (9)	318 (9)	215 (8)
Respiratory	177 (3)	89 (2)	88 (3)
Trauma/accidental	72 (1)	34 (1)	38 (1)
Hepatobiliary/liver failure	17 (0.3)	9 (0.3)	8 (0.3)
All other	344 (6)	212 (6)	132 (5)
Undetermined death	387 (6)	179 (5)	208 (8)

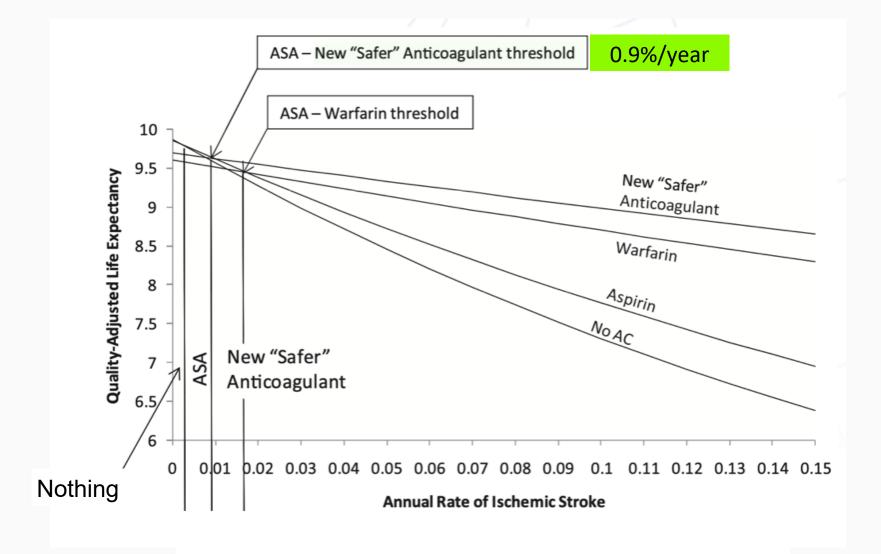
- ~ 15% of All-cause death
- ~ 23% of Vascular death
- ~ 33% of Cardiac death


Consequence:
Including Death
in a trial endpoint
dilutes the effect of OAC

ORIGINAL RESEARCH ARTICLE

Direct Oral Anticoagulants for Stroke Prevention in Patients With Device-Detected Atrial Fibrillation: A Study-Level Meta-Analysis of the NOAH-AFNET 6 and ARTESiA Trials

OAC for device-detected AF? The Issues


1. Are patients with device-detected AF at risk of stroke? YES

2. Does OAC reduce stroke in these patients? YES

3. Is the risk of stroke sufficiently high to justify OAC?

4. Is the bleeding risk acceptable?

What annual rate of stroke justifies OAC?

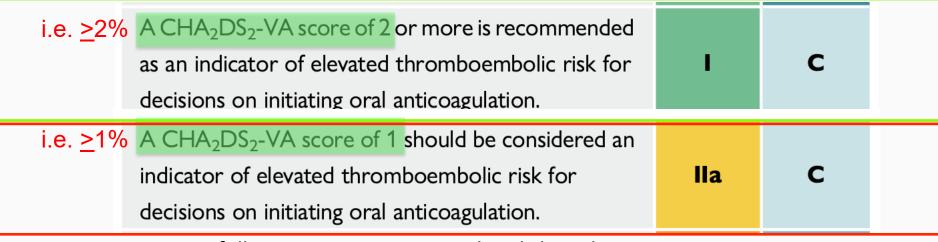
For Clinical AF Annual Stroke Rates >1% Warrant Consideration of OAC Consistent Threshold in Europe and US

COR LOE RECOMMENDATIONS

1. For nationals with AE and an estimated annual thromboembolic risk of >2% per year (eq. CHA DS a VAS

Referenced studies that support the recommendations are summarized in the Online Data Supplement.

Recommendations for Antithrombotic Therapy


2a

1. For patients with AF and an estimated annual thromboembolic risk of ≥2% per year (eg, CHA₂DS₂-VASc score of ≥2 in men and ≥3 in women), anticoagulation is recommended to prevent stroke and systemic thromboembolism.¹⁻⁷

3. For patients with AF and an estimated annual thromboembolic risk of ≥1% but <2% per year (equivalent to CHA₂DS₂-VASc score of 1 in men and 2 in women), anticoagulation is reasonable to prevent stroke and systemic thromboembolism.^{1,3}

2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation

For Clinical AF Annual Stroke Rates >1% Warrant Consideration of OAC Consistent Threshold in Europe and US

....following a patient-centred and shared care

2024 ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association

for Cardio-Thoracic Surgery (EACTS)

The ESC Device-detect AF Recommendation is Not Internally Consistent with the Rest of the Guideline Document

i.e. <u>≥</u> 1%	A CHA ₂ DS ₂ -VA score of 1 should be considered an indicator of elevated thromboembolic risk for decisions on initiating oral anticoagulation.	lla	С	
<u>≥</u> 1%	Direct oral anticoagulant therapy may be considered in patients with asymptomatic device-detected subclinical AF and elevated thromboembolic risk to prevent ischaemic stroke and thromboembolism, excluding patients at high risk of bleeding. 281,282	llb	В	

2024 ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS)

Stroke Rates in Device-Detected AF Exceed 1%/year An Identified Important Threshold

Outcome	ARTESiA	Apixaban (N = 2015)		Aspirin (N=1997)		Hazard Ratio (95% CI)	P Value
		no. of patients with event	%/patient-yr	no. of patients with event	≥1% %/patient-yr		
Stroke or systemi	c embolism	55	0.78	86	1.24	0.63 (0.45-0.88)	0.007
Stroke		55	0.78	84	1.21	0.64 (0.46–0.90)	
Ischemic o	or unknown type†	45	0.64	71	1.02	0.62 (0.43-0.91)	
Hemorrha	gic	10	0.14	13	0.18	0.76 (0.33–1.73)	

Outcome	NOAH-AFNET 6	Edoxaban (N=1270)	Placebo (N = 1266)	Adjusted Hazard Ratio (95% CI)
		no. of patients wi (% per p		
Primary con	nposite efficacy outcome†	83/2557 (3.2)	101/2495 (4.0)	0.81 (0.60 to 1.08)‡
Ischemic str	roke	22/2573 (0.9)	27/2519 (1.1)	0.79 (0.45 to 1.39)
Systemic en	nbolism	14/2579 (0.5)	28/2515 (1.1)	0.51 (0.27 to 0.96)

OAC for device-detected AF? The Issues

1. Are patients with device-detected AF at risk of stroke? YES

2. Does OAC reduce stroke in these patients?
YES

3. Is the risk of stroke sufficiently high to justify OAC? YES

4. Is the bleeding risk acceptable?

ARTESiA Showed a Reduction in Fatal/Disabling Stroke at the Expense of Non-fatal Major Bleeds

	Apixaban (N = 2015)	Aspirin (N = 1997)	Hazard Ratio (95% CI)
Total Stroke	55 (0.78)	84 (1.21)	0.64 (0.46-0.90)
Modified Rankin Score 0-2	31 (0.44)	45 (0.65)	0.68 (0.43-1.07)
Modified Rankin Score 3-6	19 (0.27)	37 (0.53)	0.51 (0.29-0.88)
Major bleeding (ISTH)	106 (1.53)	78 (1.12)	1.36 (1.01-1.82)

Major Bleeding Events	Apixaban (N = 2015)	Aspirin (N = 1997)
Clinical course	n (% of ma	jor bleeds)
1 - conservative measures	21 (22.6)	16 (32.7)
2 - supportive care, transfusion	54 (58.1)	22 (44.9)
3 - immediate measures needed to avoid death	9 (9.7)	4 (8.2)
4 - death unavoidable	3 (3.2)	6 (12.2)

Compared to Clinical AF, Device-Detected AF has Similar Stroke to Bleed Ratio on OAC Lower Annual Rates of Bleeding on OAC

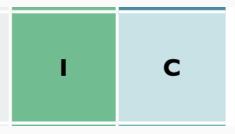
Table 3 Selected outcomes of patie	ents enrolled in trials of antithrombotic therapy	in patients with atrial fibrillation	on—expressed as event rate per 100	patient-years
Clinical AF + risk factors			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
	RE-LY ^{32a}		ROCKET A	F ^{34b} .
	Dabigatran 150 mg bid	Warfarin (target INR 2.0-3.0)	Rivaroxaban 20 (15) mg daily ^c	Warfarin (target INR 2.0-3.0)
Ischaemic stroke Major bleeding Intracranial haemorrhage Death	0.9 1 to 3.4 0.3 3.6	1.2 3.4 0.7 4.1	1.3 3.6 0.5 4.5	1.4 3.4 0.7 4.9
	ARISTOTLE ³³	ENGAGE AF-T	IMI 48 ³⁵	
	Apixaban 5 (2.5) mg bid ^c	Warfarin (target INR 2.0-3.0)	Edoxaban 60 (30) mg daily ^c	Warfarin (target INR 2.0-3.0)
Ischaemic stroke Major bleeding Intracranial haemorrhage Death	1.0 2.1 0.3 3.5 1 to 2.1	1.1 3.1 0.8 3.9	1.3 2.8 0.4 4.0	1.3 3.4 0.9 4.4
Device-detected AF + risk factors			:	
	NOAH-AFNET 6 ^{39a}		ARTESiA	40
	Edoxaban 60 (30) mg daily ^c	Aspirin 100 mg daily/placebo	Apixaban 5 (2.5) mg bid ^c	Åspirin 81 mg daily
Ischaemic stroke Major bleeding ^a Intracranial haemorrhage ^a Death	0.8 1 to 2.9 Not reported 4.7	1.0 1.2 4.3	0.6 1.7 0.2 5.1 to 2.8	1.0 0.9 0.3 4.8

Many Patients Value Stroke Prevention Over Bleeding Risk

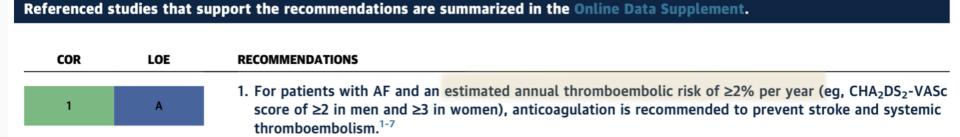
"Patients at high risk for AF placed more value on the avoidance of stroke and less value on the avoidance of bleeding than did physicians who treat patients with AF."

"Patients were willing to endure 4.4 major bleeds in order to prevent one stroke."

OAC for device-detected AF? The Issues


1. Are patients with device-detected AF at risk of stroke? YES - Consistent Evidence

- 2. Does OAC reduce stroke in these patients?YES High Quality Evidence from 2 Concordant RCTs
- 3. Is the risk of stroke sufficiently high to justify OAC? YES Baseline risk >1%/yr, identified as meaningful by patients, guidelines and Markov models
- 4. Is the bleeding risk acceptable?
 YES OAC stops fatal/disabling strokes at expense of non-fatal bleeds
 Patients tend to value stroke prevention over bleeding risk
 Same Stroke/Bleed Ratio as clinical AF


If you only want to initiate OAC based on Class I Recommendations i.e. Annual Stroke Risk > 2%

i.e. ≥2% A CHA₂DS₂-VA score of 2 or more is recommended as an indicator of elevated thromboembolic risk for decisions on initiating oral anticoagulation.

Recommendations for Antithrombotic Therapy

ESC 2024 AF GLs

Patients with Device-Detected AF And an Annual Stroke Risk > ~2%

1. Prior Stroke: 3.4%/year on Aspirin

Shoamanesh A et al Lancet Neurol 2025

2. CHA₂DS₂-VASc Score > 4: Risk 2.3%/year on Aspirin

Lopes et al JACC 2024

3. Implanted Cardiac Monitors: 2.6%/year on Aspirin

Xing L et al Heart Rhythm 2025 in Press

4. Meet DOAC Dose Reduction Criteria: 2.0%/year on Aspirin/Placebo

McIntyre et al ESC Congress Aug 29 2025

5. Vascular Disease: 1.9%/year on Aspirin/Placebo

Schnabel R et al European Heart Journal 2024

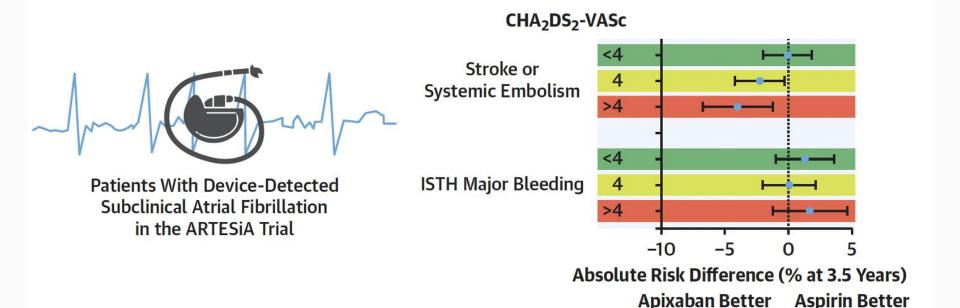
Assessing Net Benefit Cost-effectiveness of Apixaban for Device-Detected AF

Lifetime Cost

	Canada	United Kingdom	Germany		dom Germany United Sta		States
Costs			\$4937	\$7560	\$9314	\$18424	
Incremental Cost			\$20	623	\$9	110	
Incremental Cost (Discounted)			\$23	319	\$8	032	
QALYs	Dominant Strategy	Dominant Strategy	4.888	4.995	4.888	4.995	
Incremental		0,	0.4	0.107		0.107	
QALYs			0.1	107	0.107		
Incremental							
QALYS (Discounted)			0.0	0.086		0.086	
ICER			\$24,514/QALY		\$85,14	0/QALY 🔪	
ICER (Discounted)				5/QALY		5/QALY	

cost-effective

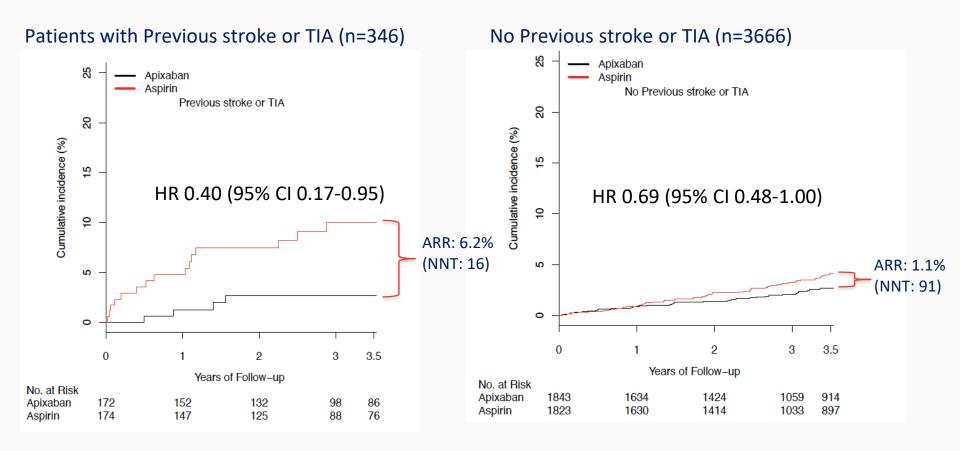
- cost-effective at \$4.35/day
- cost-saving at \$3.59/day


Sandhu et al ESC Congress Aug 31 2025 Simultaneous Publication Europace Lamy et al

Device-Detected AF: The Same OAC Decision As for Clinical AF

- 1. Baseline risk/benefit of OAC could be acceptable to anyone
 - Worth discussing with every patient (~ Class IIa)
- 2. Subgroups at high risk (> 2.0% annual) of stroke (~ Class I)
 - Prior Stroke
 - CHA₂DS2-VASc Score > 4
 - Implantable Cardiac Monitors
 - Meeting Dose Reduction criteria
 - Vascular disease

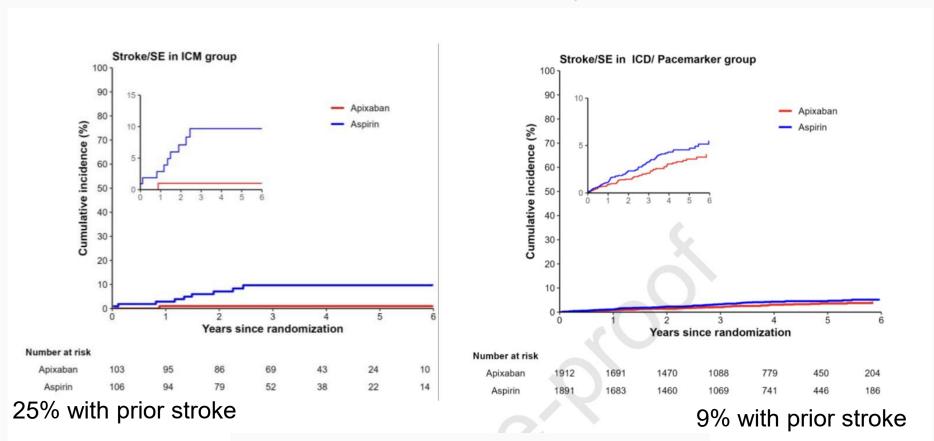
CHA₂DS2-VASc Score > 4: 2.25%/year on Aspirin



CHA₂DS₂-VASc <4 Low risk of stroke Bleeding risk outweighs benefit CHA₂DS₂-VASc =4 Intermediate risk of stroke Similar risk and benefit CHA₂DS₂-VASc >4 High risk of stroke Stroke benefit outweighs risk

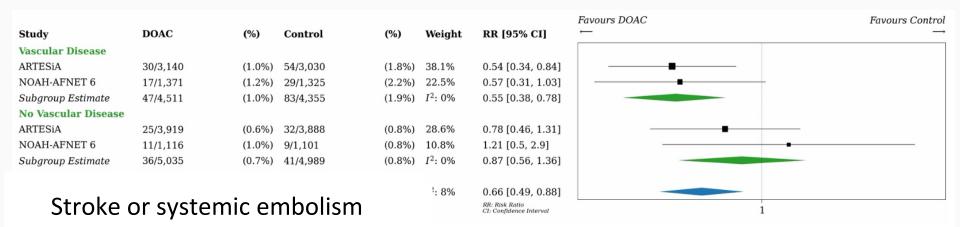
Lopes RD, et al. J Am Coll Cardiol. 2024;84(4):354-364.

Lopes et al


Prior Stroke: 3.4%/year on Aspirin

P-interaction for absolute risk =0.03

Shoamanesh A et al Lancet Neurol 2025


Implanted Cardiac Monitors: 2.6%/year on Aspirin

P interaction for absolute risk =0.002

Xing L et al Heart Rhythm 2025 in Press

Vascular Disease: 1.9%/year on Aspirin/Placebo

Incidence Rate Ratio p_{interaction}=0.13

Schnabel R et al European Heart Journal 2024

Meeting Dose Reduction Criteria: 2.0%/year on Aspirin/Placebo

	Composite of	All-cau	ise Stroke or Sy	ystemi	c Emboli	sm According t	to Trial's Own Dose Reduction Criteria	
							Favours DOAC	Favours Aspirin/Placebo
Study	DOAC	(%)	Aspirin/Placebo	(%)	Weight	RR [95% CI]	←	\rightarrow
Standard Dose								
NOAH-AFNET-6	21/1,902	(1.1%)	25/1,839	(1.4%)	23.0%	0.81 [0.46, 1.45]		
ARTESiA	49/6,361	(0.8%)	75/6,264	(1.2%)	59.5%	0.64 [0.45, 0.92]		
Subgroup Estimate	70/8,263	(0.8%)	100/8,103	(1.2%)	I^2 : 0%	0.69 [0.51, 0.93]		
Reduced Dose								
NOAH-AFNET-6	7/665	(1.1%)	15/669	(2.2%)	9.6%	0.47 [0.19, 1.14]		
ARTESiA	6/698	(0.9%)	11/655	(1.7%)	7.8%	0.51 [0.19, 1.38]		
Subgroup Estimate	13/1,363	(1.0%)	26/1,324	(2.0%)	I^2 : 0%	0.49 [0.25, 0.95]		
Pooled Estimate					I^2 : 0%	0.65 [0.49, 0.85]		
Mantel-Haenszel, DerSimonian-Laird Random Effects Subgroup Effect	p=0.00, z=3.09 $\tau^2=0.00$ $\chi^2=0.84, p=0.36, I^2=0.0\%$					RR: Risk Ratio CI: Confidence Interval	1	

Stroke or systemic embolism

Incidence Rate Ratio p_{interaction}=0.36

McIntyre et al ESC Congress Aug 29 2025

and Isabelle C. Van Gel Viewpoint

GREAT DEBATE

Arrhythmias

Great debate: device-detected subc fibrillation should be treated like clessvier fibrillation

Prashanthan Sanders (1) 1*, Emma Svennberg (1) 2, Søren Z. Die

Contents lists available at ScienceDirect

European Journal of Internal Medicine

journal homepage: www.elsevier.com/locate/ejim

Clinical Insights

Detection of subclinical atrial fibrillation with cardiac implanted electronic devices: What decision making on anticoagulation after the NOAH and Harry J. G. M. Crijns ⁶, Pier D. Lambiase ⁵, Giuseppe Boriz ARTESiA trials?*

rco Vitolo a,b,

April 8, 2024

Toward More Personalized Management of Device-Detected Atrial Fibrillation

James E. Siegler, MD¹; Luciano A. Sposato, MD, MBA²; Shadi Yaghi, MD³

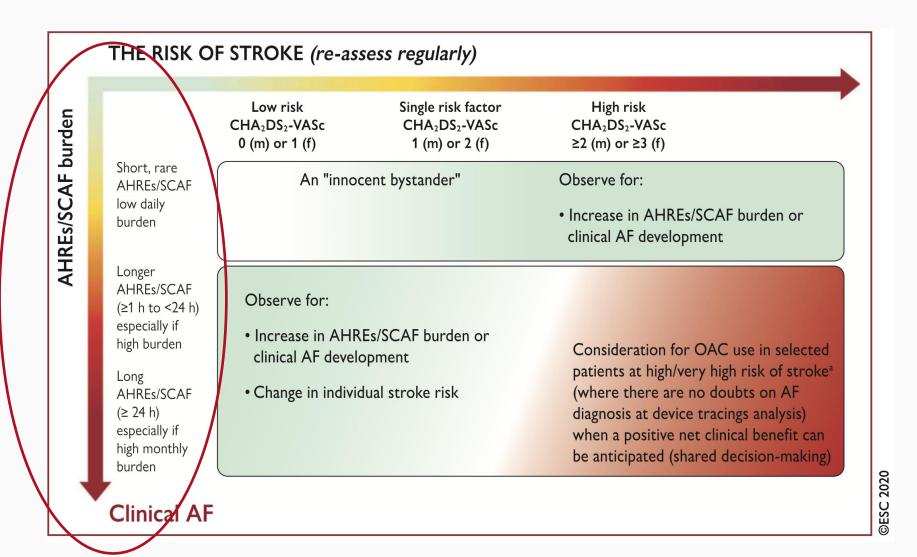
Author Affiliations

JAMA Neurol. 2024;81(6):573-574. doi:10.1001/jamaneurol.2024.0673

Articles Publish **Topics** About Contact

COMMENTARY · Volume 137, Issue 5, P383-385, May 2024

Should Patients with Subclinical Atrial Fibrillation Receive Anticoagulation?


James A. Reiffel, MD ^a · Peter R. Kowey, MD ^b · Gerald V. Naccarelli, MD ^o ^c ⊠ Affiliations & Notes ✓ Article Info ✓

Opinion

Subclinical Atrial Fibrillation: To Anticoagulate or Not?

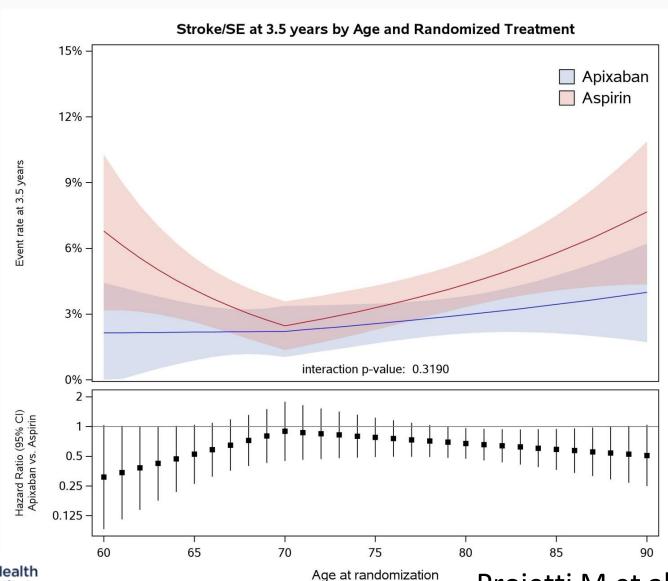
Sharath Kommu ^{1,2,*} and Param P. Sharma ³

AF Duration and CHA₂DS₂-VASc: Roles in risk stratification?

Canadian Institutes of Health Research

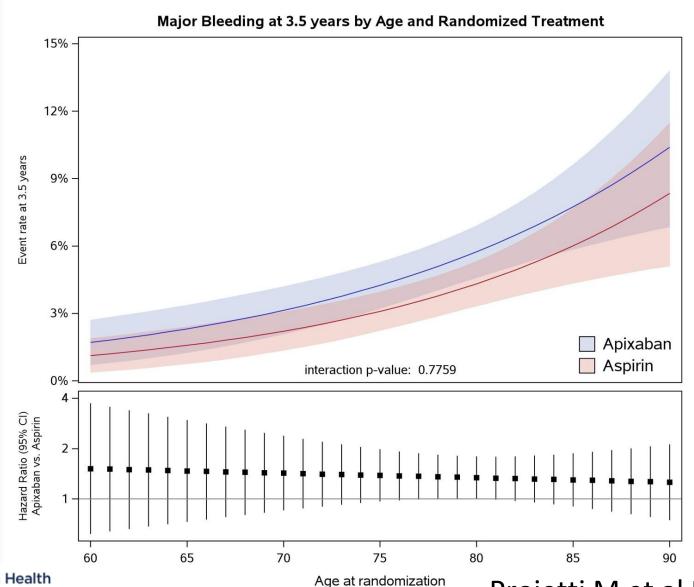
Instituts de recherche en santé du Canada

PROTECTED WHEN COMPLETED

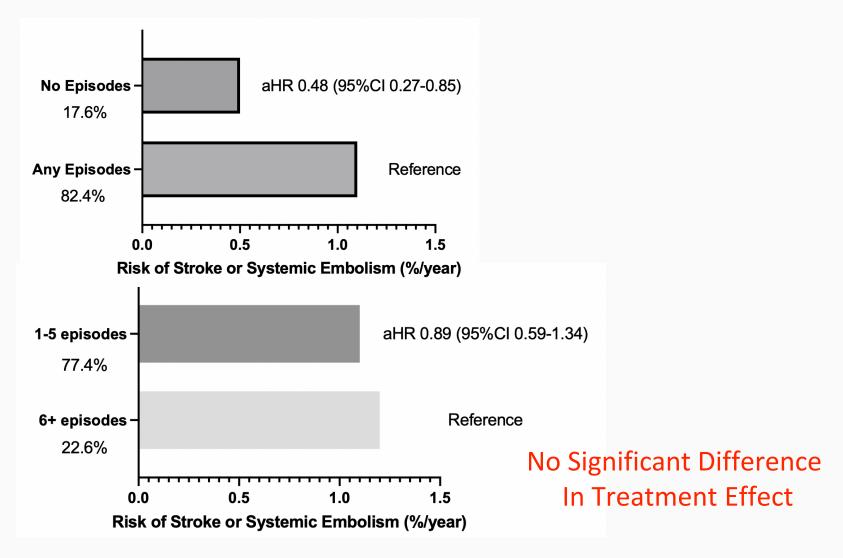

		Application D	Details	
Funding Opportunity: Project Grant: Fall 2024 and S	pring 2025 (2024-0			
Applicant:				
Surname		Given Names		Participant Type
McIntyre		William		Independent Researcher - New/Early Career Investigator
Institution		Faculty		Department
McMaster University				
Telephone	Fax		E-mail	
	гах			
905-521-2100			William.McIntyre	@phri.ca

Title:

An Individual Participant Data Meta-Analysis of Two Randomized Controlled Trials Assessing Oral Anticoagulation for Device-detected Atrial Fibrillation: Apixaban for the Reduction of Thrombo-Embolism in Patients With Device-Detected Sub-Clinical Atrial Fibrillation (ARTESiA) and Non-vitamin K antagonist Oral anticoagulants in patients with Atrial High rate episodes (NOAH AFNET 6) (ARTESiA-NOAH IPDMA)

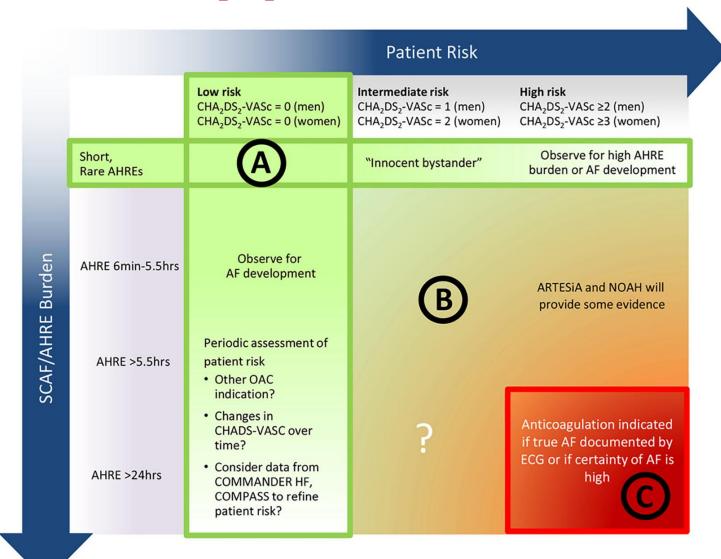


SCAF-Associated Stroke Risk Increases with Age: The Treatment Effect is Consistent



SCAF-Associated Bleed Risk Increases with Age: The Treatment Effect is Consistent

Absolute Risk: Subclinical AF Frequency



Stroke and Bleeding in ARTESiA patients who had SCAF Progression (observational)

	Oral Antic	oagulation	Aspirin	
	Open-label Transitioned following progression	Blinded Continued on Blinded Apixaban following progression	Continued on Blinded Aspirin following progression	Relative difference on Aspirin
Stroke/ S ystemic Embolism	14/678 5/281 0.84% /pt-year 0.81%/pt-year Overall 19/959 0.83 %/pt-year		8/252 1.42% /pt-year	+ 71.1%
Major Bleeding	20/678 11/281 1.21% /pt-year 1.82% /pt-year Overall 31/959 1.38 % /pt-year		8/252 1.44% /pt-year	+4.3%

Boriani et al ESC 2024

AF Duration and CHA₂DS₂-VASc: Roles in risk stratification?

Device-Detected AF: The Same OAC Decision As for Clinical AF

- 1. Baseline risk/benefit of OAC could be acceptable to anyone
 - Worth discussing with every patient (~ Class IIa)
- 2. Subgroups at high risk (> 2.0% annual) of stroke (~ Class I)
 - Prior Stroke
 - CHA₂DS2-VASc Score > 4
 - Implantable Cardiac Monitors
 - Meeting Dose Reduction criteria
 - Vascular disease