Inappropriate shock with subcutaneous ICD versus transvenous ICD An individual participant data meta-analysis

William F. McIntyre MD PhD
For the PRAETORIAN and ATLAS Investigators

August 29, 2025

Background

Transvenous ICD (TV-ICD)

Subcutaneous ICD (S-ICD)

Pulse generator

ESC Congress World Congress 2025 Madrid of Cardiology

Inappropriate shock in published ICD trials

Mechanisms:

cardiac oversensing electromagnetic interference atrial arrhythmias

ESC Congress World Congress 2025 Madrid of Cardiology

Negative consequences:

painful impaired quality of life pro-arrhythmia accelerated battery depletion association with mortality

The PRAETORIAN and ATLAS randomized trials

Both trials randomized patients with a standard indication for an ICD without an indication for pacing to a subcutaneous or transvenous ICD.

PRAETORIAN (2020)¹

Primary endpoint: Composite of device-related complications and inappropriate shocks

Hazard ratio: 0.99, 95% CI 0.71 to 1.39; P = 0.01 for *non-inferiority*

ATLAS (2022)²

Primary endpoint: Perioperative major lead-related complication Absolute reduction 4.4%; 95% CI 1.9 to 6.9; P = 0.001 for *superiority*

Neither trial was powered to assess shock outcomes, including inappropriate shock

PRAETORIAN/ATLAS Individual Participant Data Meta-Analysis

Aims

- 1. To compare the rates of first inappropriate shock between subcutaneous and transvenous ICDs
- 2. To describe the mechanism of first inappropriate shocks
- 3. To compare the rates of first inappropriate ICD therapy (i.e., anti-tachycardia pacing or shock) between subcutaneous and transvenous ICDs

Methods

We created a central database harmonizing individual participant-level data of the PRAETORIAN and ATLAS trials

Primary endpoint: Time to first inappropriate shock

Shock in the absence of ventricular tachycardia or ventricular fibrillation.

Secondary endpoint: Time to first inappropriate ICD therapy

Anti-tachycardia pacing or shock in the absence of ventricular tachycardia or ventricular fibrillation.

Adjudicated mechanism for inappropriate shock or inappropriate ICD therapy:

- (1) cardiac oversensing, defined as P-wave or T-wave oversensing
- (2) electromagnetic interference or myopotentials
- (3) atrial arrhythmia, defined as atrial fibrillation or supraventricular tachycardia

Baseline characteristics

	Subcutaneous ICD n = 673	Transvenous ICD n = 669
Age (years), median (IQR)	57.8 (49.0-66.0)	59.0 (51.0-67.0)
Female sex	148 (22.0%)	145 (21.7%)
Body mass index (kg/m²), median (IQR)	27.2 (24.5-31.1)	27.8 (25.0-31.7)
Primary prevention	521 (77.4%)	522 (78.0%)
Secondary prevention	152 (22.6%)	147 (22.0%)
Ischemic cardiomyopathy	375 (55.7%)	391 (58.5%)
Non-ischemic cardiomyopathy	153 (22.7%)	157 (23.5%)
Other	152 (22.6%)	132 (19.7%)
Left ventricular ejection fraction ≤35%	380 (68.3%)	389 (69.1%)
Beta blocker	550 (81.7%)	546 (81.6%)
Antiarrhythmic drugs	52 (7.7%)	40 (6.0%)
SQ-RX Model 1010 (first-generation)	183 (27.2%)	
A209 EMBLEM (second-generation)	208 (30.9%)	
A219 EMBLEM MRI (third-generation)	273 (40.6%)	
Crossed over to other ICD type	9 (1.4%)	11 (1.6%)

Time to first inappropriate shock

	Subcutaneous ICD N=673		Transvenous ICD	
			N=669	
Inappropriate shock	n	(%/yr)	n	(%/yr)
	57	2.5	36	1.5

SMART Pass

A proprietary algorithm designed to reduce inappropriate shocks from cardiac oversensing (T-waves) in patients with a subcutaneous ICD

In patients randomized to receive a subcutaneous ICD:

- SMART Pass activated at <u>baseline</u> in 252 (37.4%)
- SMART Pass activated <u>during follow-up</u> in 267 (39.7%)
- SMART Pass <u>never</u> activated in 154 (22.9%)

SMART Pass (modeled as a time-dependent co-variate) was not associated with a reduction in:

- first inappropriate shock for any reason: hazard ratio 1.15, 95% CI 0.61-2.16
- first inappropriate shock due to cardiac oversensing: hazard ratio 0.80, 95% CI 0.32-1.97

Time to first inappropriate ICD therapy (anti-tachycardia pacing or shock)

	Subcutaneous ICD N=673		Transvenous ICD		
			N=669		
Inappropriate ICD therapy	n	%/yr	n	%/yr	
	59	2.6	51	2.2	

Conclusions

From our individual participant data meta-analysis of PRAETORIAN and ATLAS:

- 1. The rates of first inappropriate shock were *historically* low with both subcutaneous and transvenous ICDs (2.5% vs. 1.5% per year).
- 2. Patients with a subcutaneous ICD had a higher rate of first inappropriate shock than those with a transvenous ICD.
- 3. A subcutaneous ICD was more likely to cause a first inappropriate shock due to cardiac oversensing and electromagnetic interference.
- 4. A transvenous ICD was more likely to cause a first inappropriate shock due to atrial arrhythmia.

Simultaneous publication

Alexander P. Benz, Louise R.A. Olde Nordkamp, William F. McIntyre, et al. Inappropriate shock with a subcutaneous or transvenous implantable cardioverter-defibrillator: an individual participant data meta-analysis of the randomized PRAETORIAN and ATLAS trials. J Am Coll Cardiol. 2025.

Now available:

https://www.jacc.org/

@WFMMD @AlexanderPBenz @PHRIresearch @amsterdamumc @JACCJournals

Supplemental Material

Derivation of study population

Subgroup analyses

Subgroup	Subcutaneous ICD (N=673)		Transvenous ICD (N=669)		Hanner ratio (05% CI)	
	n/N (%)	Event rate	n/N (%)	Event rate	Hazard ratio (95% CI)	p_{int}
Age (tertiles) ^a						
Lowest	14/248 (5.6)	1.8	9/209 (4.3)	1.4	1.31 (0.57-3.04)	0.23
Mid	17/211 (8.1)	2.3	14/227 (6.2)	1.9	1.23 (0.60-2.50)	
Highest	26/214 (12.1)	3.5	13/233 (5.6)	1.4	2.33 (1.20-4.54)	
Sex						
Female	7/148 (4.7)	1.3	4/145 (2.8)	0.8	1.66 (0.48-5.67)	0.98
Male	50/525 (9.5)	2.8	32/524 (6.1)	1.7	1.62 (1.04-2.52)	
Left ventricular ejection fraction ^b						
≤35%	33/380 (8.7)	2.4	23/389 (5.9)	1.5	1.52 (0.90-2.60)	0.41
>35%	19/176 (10.8)	3.1	8/174 (4.6)	1.3	2.31 (1.01-5.29)	
Baseline use of a betablocker and/or antiarrhythmic drug						
No	9/111 (8.1)	2.8	5/107 (4.7)	1.3	1.90 (0.63-5.66)	0.70
Yes	48/562 (8.5)	2.5	31/562 (5.5)	1.6	1.56 (0.99-2.45)	

The median age was 45 years in the lowest tertile, 58 years in the mid tertile and 70 years in the highest tertile.

^b Calculations are based on available data (left ventricular ejection fraction was missing for 223 patients).

A proprietary algorithm designed to reduce inappropriate shocks from cardiac oversensing. became available for patients who received a second-generation (A209 EMBLEM) or third-generation (A219 EMBLEM MRI) subcutaneous ICD model. This algorithm uses a high-pass filter at 8-9 Hz to attenuate low-frequency signals (e.g., T-wave), thereby enhancing the QRS-to-T-wave ratio and improving sensing accuracy. proprietary algorithm

Of 57 patients in the subcutaneous ICD group who had a first inappropriate shock, 30 (52.6%) had their event before or in the absence of a first activation of the SMART Pass algorithm.