The ACCORD Trial: Review of Design and Results

Highlights from presentations made at the ADA 68th Scientific Sessions, June 10, 2008

Action to Control Cardiovascular Risk in Diabetes

ACCORD Glycemia Research Question and Study Design

Glycemia Research Question:

In middle aged or older adults with type 2 DM at high risk for a CVD event because of <u>existing CVD or additional CVD risk</u> factors, does a <u>therapeutic strategy</u> that targets <u>AIC <6.0%</u> reduce the rate of CVD events more than a strategy that targets <u>AIC 7.0% to 7.9%</u>?

- Design:
 - Multi-center, randomized, controlled, double 2x2 factorial trial

- 3 questions: glycemia, BP, Lipids

- Glycemia Trial: Open Label Blinded Endpoint Assessment
- Sample size 10,251
- Randomized to intensive vs standard glycemia management

tion to Control Cardiovascular Risk in Diabet

ACCORD Participant Eligibility

- Stable Type 2 Diabetes for 3+ months
- A1C <u>>7.5%</u> AND <u><9%</u> (more meds) OR <u><11%</u> (fewer meds)
- Age 40-79 + previous CVD events OR
- Age 55-79 with:
 - anatomical ASCVD, albuminuria, LVH **OR**
 - <u>></u> 2 additional CVD risk factors (dyslipidemia, hypertension, smoking, obesity)
- ▶ BMI ≤ 45; Cr ≤ 1.5 mg/dL (133 uM)
- No frequent/recent serious hypoglycemia
- Able/willing to take insulin, do glucose monitoring
- Also eligible for BP or Lipid Trial

tion to Control Cardiovascular Risk in Diabete

ACCORD Prespecified Outcomes

Primary:

 First occurrence of nonfatal MI OR Nonfatal Stroke OR CV Death

Secondary/Other:

- Each component of 1⁰
- Expanded CVD: 1⁰ + Revasc & HF Hosp
- Total mortality
- Microvascular (nephropathy, neuropathy, eye)
- Eye photo substudy (N = 3537)
- HRQL (N = 2053); Cost (N = 4311)
- MIND: cognition, brain volume (MRI)
- Falls/Fractures/BMD (ancillary study)

ACCORD Key Baseline Characteristics

Age	62 years
Women	38.6%
Median DM Duration	10 years
Previous CVD Event	35%
White	65%
Mean BMI	32 kg/cm ²
Mean AI C	8.3%
Mean SBP/DBP	136/75 mmHg
Mean LDL	105 mg/dL

ascular Risk in Diabetes

ACCORD Last Clinic Measurement

	Intensive	Standard	Р
LDL-C	91 mg/dL	91 mg/dL	0.74
SBP	126 mmHg	127 mmHg	0.002
DBP	67 mmHg	68 mmHg	<0.001
BP Drug (%)	91%	92%	0.06
ACE-I (%)	70%	72%	0.02
ASA (%)	76%	76%	0.98
Beta Blocker (%)	48%	49%	0.27

sk in Diabetes

Median A1C and Interquartile Ranges

The mean difference during the trial was 1.1%

Medications Ever Used During the Trial

Drug Class/Drug (% of participants)	Intensive (N = 5128)	Standard (N = 5123)
Any Insulin (%)*	77	55
Bolus Insulin (%)	55	35
Metformin (%)	95	87
Secretagogue (%)	87	74
Thiazolidinedione (%)	92	58
Rosiglitazone (%)	91	58
Acarbose (%)	23	5
Exenatide/Sitagliptin (%)	18	5
Exenatide (%)	12	4

ction to Control Cardiovascular Risk in Diabetes

Compared with the standard strategy, the intensive strategy had:

Lower AIC	
Targets (achieved median)	<6% (6.4%) vs 7-7.9% (7.5%)
Greater use of medications:	
More multiple oral meds	70% vs 45% on 3-5 oral classes
More insulin	77% vs 55% on insulin
More combination orals + insulin	62% vs 18% on 3-5 orals + insulin
More consequences of therapy:	
Severe hypoglycemia	10.5% vs 3.5% w/ hypoglycemia event requiring medical assistance
Weight gain	28% vs 14% >10 kg gain
More SAEs	2.2% vs 1.6% w non-hypo SAE

ACCORD All-Cause Mortality and Primary Outcome Event Curves

Action to Control Cardiovascular Risk in Diabetes

ACCORD Subgroup Analyses

Mortality

Primary outcome (composite nonfatal

MI, nonfatal stroke, CVD death)

ction to Control Cardiovascular Risk in Diabetes

 \mathbf{X}

ACCORD Conclusions

- Compared to a strategy targeting AIC levels of 7-7.9%, a therapeutic strategy using currently available therapies to target near-normal AIC levels in people with longstanding T2DM and either CVD or additional CVD risk factors – over average 3.5 years:
 - Increased mortality
 - Did not reduce a composite of major CVD events (primary outcome)
 - Mortality results consistent across several subgroups
 - Suggestion of reduced major CVD events in 2 subgroups: primary prevention and AIC <8% @ BL

ACCORD Conclusions, cont.

- ACCORD identified a previously unknown harm of a strategy of intensive glucose lowering in high-risk individuals with T2DM
- ACCORD designed to test a <u>therapeutic strategy</u>, not any specific component(s) of the strategy; numerous factors differed between the randomized groups
 - Potential causes are difficult, if not impossible, to separate out from other factors that differ by group
 - Example: An ACCORD participant may or may not be on a drug for various reasons, so we can't separate out effects of the drug from effects of patient characteristics (some of which were not measured)
- Exploratory analyses examined various medications and hypoglycemia – no specific cause of higher mortality found

Additional Analyses of ACCORD data: current and planned

- Glycemia trial results on microvascular outcomes
- Comparisons of intensive vs. standard glycemia groups in post-hoc subgroups defined by:
 - Baseline characteristics
 - Post-randomization changes in clinical factors
 - Post-randomization occurrence of events
- Epidemiologic analyses, including associations between:
 - AIC and hypoglycemia;AIC and morbidity/mortality outcomes
 - Various medications and: AIC, hypoglycemia, mortality
- Final glycemia trial data and BP and Lipid trial main results expected in 2010