

PHR

New Anticoagulant for Stroke Prevention in patients with Atrial Fibrillation and ICH (NASPAF-ICH)

Study Organization

Study Principal Investigator

Dr. Ashkan Shoamanesh

Study Co-Principal Investigators

Dr. Oscar Benavente Dr. Robert Hart

Executive Committee

Dr. Ashkan Shoamanesh Dr. Robert Hart Dr. Oscar Benavente Dr. Mike Sharma Dr. Stuart Connolly Jackie Bosch, PhD

NASPAF-ICH Sites

Site #	PI Name	Location	Site
1	Ashkan Shoamanesh	Hamilton	Hamilton General Hospital
2	Alexander Khaw	London	LHSC-University Hospital
3	David Gladstone	Toronto	Sunnybrook
5	Aleksandra Pikula	Toronto	University Health Network
6	Dariush Dowlatshahi	Ottawa	The Ottawa Hospital Research Institute
7	Shelagh Coutts (Eric Smith)	Calgary	Foothills Medical Centre
8	Ken Butcher	Edmonton	University of Alberta Hospital
9	Thalia S. Field	Vancouver	Vancouver Coastal Health Research Institute
10	Laura Gioia	Montreal	Centre Hospitalier de l'Université de Montréal (CHUM)

Background

- Atrial fibrillation (AF) currently afflicts an estimated 2.7 million people in the United States and 2-3% of Canadians.
- Primary source of cardioembolic stroke.

Highest rate of death and long-term disability amongst ischemic stroke subtypes

Restarting Anticoagulant Therapy After Intracranial Hemorrhage

Rese

Knowledge

RI

A Systematic Review and Meta-Analysis

Santosh B. Murthy, MD, MPH; Ajay Gupta, MD; Alexander E. Merkler, MD; Babak B. Navi, MD, MS; Pitchaiah Mandava, MD, PhD, MSEE; Costantino Iadecola, MD; Kevin N. Sheth, MD; Daniel F. Hanley, MD; Wendy C. Ziai, MD, MPH; Hooman Kamel, MD

N=228 41% Stroke neurologists (CSC, NAVIGATE ESUS investigators) 26% Neurosurgeons (ASNS) 33% Thrombosis (ISTH)

DOAC associated ICH

24

Required craniotomy

Large henatona (330cm3)

Deep IPH WITH HTN CONTROL

Snall henatona (Socna)

CHRDS'S

lealth Through Knowledg

PHR

Never 7-12 months

4-6 months

1-3 months

3-4 weeks 1-2 weeks

Within 7 days

2%

Head trauma

PLoS ONE 13(1): e019113

Lobar hemorrhage

Cerebral anyloid aneiopathy

Previous ICH

-15 Microbleeds

100%

90%

80%

70%

60%

50%

40%

30% 20% 10% 0%

Oral Anticoagulation and Functiona Outcome after Intracerebral Hemorrha

Alessandro Biffi, MD,^{1,2,3}* Joji B. Kuramatsu, MD,⁴* Audrey Leasure, BS,⁵
Hooman Kamel, MD,⁶ Christina Kourkoulis, BS,^{1,2,3} Kristin Schwab, BA,^{1,3}
Alison M. Ayres, BA,^{1,3} Jordan Elm, PhD,⁷ M. Edip Gurol, MD, MSc,^{1,3}
Steven M. Greenberg, MD, PhD,^{1,3} Anand Viswanathan, MD, PhD,^{1,3}
Christopher D. Anderson, MD, MMSc,^{1,2,3} Stefan Schwab, MD,⁴
Jonathan Rosand, MD, MSc,^{1,2,3} Fernando D. Testai, MD, PhD,⁸
Daniel Woo, MD, MS,⁹ Hagen B. Huttner, MD,⁴* and Kevin N Sheth, MD^{5*}

Strictly lobar CMBs PHRI Highly Confidential

Cortical superficial siderosis

ANN NEUROL 2017;82:755-76

Oral Anticoagulation and Functiona Outcome after Intracerebral Hemorrha

Alessandro Biffi, MD,^{1,2,3}* Joji B. Kuramatsu, MD,⁴* Audrey Leasure, BS,⁵
Hooman Kamel, MD,⁶ Christina Kourkoulis, BS,^{1,2,3} Kristin Schwab, BA,^{1,3}
Alison M. Ayres, BA,^{1,3} Jordan Elm, PhD,⁷ M. Edip Gurol, MD, MSc,^{1,3}
Steven M. Greenberg, MD, PhD,^{1,3} Anand Viswanathan, MD, PhD,^{1,3}
Christopher D. Anderson, MD, MMSc,^{1,2,3} Stefan Schwab, MD,⁴
Jonathan Rosand, MD, MSc,^{1,2,3} Fernando D. Testai, MD, PhD,⁸
Daniel Woo, MD, MS,⁹ Hagen B. Huttner, MD,⁴* and Kevin N Sheth, MD^{5*}

TABLE 5. Oral Anticoagulation Resumption and Outcomes following Lobar Intracerebral Hemorrhage relatedto Possible versus Probable CAAN=190

		Possible CAA		Probable CAA			
Outcome ^a	HR	95% CI	P	HR	95% CI	Þ	
Mortality	0.27	0.08–0.86	0.028^{b}	0.30	0.10-0.92	$0.037^{\rm b}$	
Favorable outcome, mRS 0–3	3.40	1.22–9.46	0.020^{b}	3.11	1.08-8.97	0.038^{b}	

^aAll analyses were adjusted by means of propensity score matching using the following parameters: Glasgow Coma Scale at presentation, intracerebral hemorrhage volume, presence of intraventricular hemorrhage, discharge mRS, CHA₂DS₂-VASc score, and HAS-BLED score. ^bStatistically significant.

CAA = cerebral amyloid angiopathy; CI = confidence interval; HR = hazard ratio; mRS = modified Rankin Scale.

Cerebral amyloid angiopathy, cerebral microbleeds and implications for anticoagulation decisions: The need for a balanced approach

Andreas Charidimou^{1,2}, Ashkan Shoamanesh³, Rustam Al-Shahi Salman⁴, Charlotte Cordonnier⁵, Luke A Perry⁶, Kevin N Sheth⁷, Alessandro Biffi^{1,8}, Jonathan Rosand^{1,8,9} and Anand Viswanathan^{1,2}

NASPAF-ICH: Aim

- Open-label, multicenter national phase II randomized pilot study.
- To determine the feasibility of a controlled trial examining the efficacy and safety of NOACs compared with aspirin for stroke prevention in patients with high-risk AF and previous intracerebral hemorrhage (ICH).

NASPAF-ICH: Hypothesis

- Feasibility: Enrollment of 100 eligible participants at 15 recruitment sites over 24 months will be feasible with minimal loss-tofollow up.
- Efficacy: Treatment with NOACs will reduce the risk of ischemic stroke compared with aspirin.
- Safety: There will be no significant increase in ICH recurrence with NOACs vs. aspirin

17

Main Exclusion Criteria

- ▶ Non-stroke indication for antiplatelet or anticoagulant therapy
- ▶ Recent ICH within 14 days (no upper limit on ICH)
- Estimated glomerular filtration rate <30 mL/min</p>
- ▶ Platelet count less than 100,000/mm³ at enrollment or other bleeding diathesis
- Prior symptomatic lobar ICH other than the qualifying event (i.e. ≥2 symptomatic lobar ICH)
- Uncontrollable hypertension consistently above SBP/DBP of 160/100 mmHg
- Known hypersensitivity to either ASA or NOACs
- Inability to adhere to study procedures or unexpected to survive 6 months

Phased Approach to Enrollment

► NASPAF-ICH I (n=15):

- Exclusion of patients with definite/probable CAA (modified Boston Criteria)
 - ► Log participants with definite/probable CAA for inclusion in NASPAF-ICH

► NASPAF-ICH II (n=85):

- Only once NASPAF-ICH I participants have completed an average of 6 months of follow-up and no signal suggesting harm
- Include patients with definite/probable CAA unless have experienced a previous lobar symptomatic ICH other than the index event

Requisites for Randomization

Baseline MRI within 3 months (clinical or study)

23

Serum creatinine/eGFR within 3 months

NASPAF-ICH: Outcomes

- Primary feasibility: Average recruitment rate amongst sites.
- Efficacy: Composite of ischemic stroke and recurrent ICH, fatal stroke, MI, all-cause mortality, and mRS & MoCA at end of study, and composite of all stroke, myocardial infarct, systemic thromboembolism or death.
- Safety: Major hemorrhage (ISTH criteria)

Anticipated Outcomes

Table 2. NASPAF-ICH: Anticipated Stroke Outcomes

	lschemic stroke	Recurrent ICH	All stroke		
Aspirin	6%/yr	2%/yr	8%/yr		
NOAC	2%/yr	2%/yr	4%/yr		

Predefined Subgroup Analysis

- Timing of randomization relative to qualifying ICH (2-4 weeks vs. >4 weeks)
- Qualifying ICH topography (lobar vs. deep)
- Presence/absence of prior ICH other than the qualifying event
- CAA vs. non-CAA related ICH
- Cerebral microbleed status at study entry

NASPAF-ICH: Recruitment Rate

5 patients/centre/year

- Estimate 12 eligible patients per high-volume stroke research centre per year, on the basis of an average annual admission rate of 100 ICH cases, 12% suffering non-fatal ICH in the setting of high-risk AF.
- Notwithstanding eligible patients with high risk AF and remote ICH living within the community who are actively being followed in anticoagulation, internal medicine subspecialty, neurology and family medicine outpatient clinics.

Optimization of Participant Safety

PHR

29

Strict BP control to long-term target < 130/80 mmHg

PHRI Highly Confidential

Effects of Perindopril-Based Lowering of Blood Pressure on Intracerebral Hemorrhage Related to Amyloid Angiopathy The PROGRESS Trial

Hisatomi Arima, MD; Christophe Tzourio, MD; Craig Anderson, MD; Mark Woodward, PhD; Marie-Germaine Bousser, MD; Stephen MacMahon, PhD; Bruce Neal, MD; John Chalmers, MD; for the PROGRESS Collaborative Group (*Stroke*. 2010;41:394-396.)

	Number of Events		ents Favors		ors	Favors		Risk Reduction	P for	
	Active	Placebo		Act	ive	P	acebo	(95% CI)	Homogeneity	
Probable CAA-related ICH	3	13	•	-		-		77% (19 to 93%)	0.4	
Probable HT-related ICH	18	33		-	-	_		46% (4 to 69%)		
Unclassified ICH	16	28		-				43% (-5 to 69%)		
Overall	37	74			\diamond	-		50% (26 to 67%)		
			0.1	0.2	0.5	1	2			
				Haza	ard Ratio (95	5% CI)				

Mean reduction of 9/4 mm Hg

Blood-pressure targets in patients with recent lacunar stroke: the SPS3 randomised trial

www.thelancet.com Published online May 29, 2013 http://dx.doi.org/10.1016/S0140-6736(13)60852-1

	Higher-targ (n=1519)	jet group	Lower-targ (n=1501)	et group	Hazard ratio (95% CI)	p value			
	Number of patients	Rate (% per patient-year)	Number of patients	Rate (% per patient-year)	-				
Stroke									
All stroke	152	2.77%	125	2.25%	0·81 (0·64–1·03)	0.08			
Ischaemic stroke or unknown	131	2.4%	112	2.0%	0·84 (0·66–1·09)	0.19			
Intracranial haemorr	hage								
All	21*	0.38%	13†	0.23%	0·61 (0·31 – 1·22)	0.16			
Intracerebral	16	0.29%	6	0.11%	0·37 (0·15–0·95)	0.03			
Table 2: Primary and secondary outcomes									

NASPAF-ICH: Importance

- RCT assessing safety and efficacy of anticoagulant therapy in AF patients after intracerebral hemorrhage.
- Provide the requisite pilot data on recruitment rates, operational feasibility, event rates and treatment effect estimates to design a large, multicenter, phase III, RCT assessing whether NOACs are more efficacious than aspirin for prevention of the composite of ischemic stroke and recurrent ICH in high-risk AF patients with previous ICH
- Provide clarity in an area of clinical practice that is currently inundated with doubt and global/institutional variation in practice.
- Significantly lower the exaggerated perception of ICH risk amongst physicians with potential of improving anticoagulation rates amongst all AF patients.

Study Schedule

Section 2.18 in the study protocol

									-	
	Screen	Random		Tre	atment Ph	ase				
	V1	V2	V3	V4	V5	V6	V7	(V8)	(V9)	EOT
Timelines	-4 to 0 wks ^b	0	1 Mo	2 Mo	3 Mo	4 Mo	5 Mo	6 Mo	7 Mo	
Visit Window (weeks)			±1	±2	±2	±1	±2	±2	±1	±1
Type of Visit	Visit	Visit	Visit	TC	TC	Visit	TC	TC	Visit	Visit
Initiation Procedures										
Informed consent	•									
Eligibility criteria	•									
Demographics	•									
Medical hx and risk factors	•									
Pregnancy test ^c	•									
eGFR ^d	•									
Liver panel	•									
CBC	•									
Coagulation studies	•									
ESR/CRP	•									
Blood pressure at time of ICH	•									
ICH characteristics	•									
Weight/height ^e	•									
MRI brain ^f	•									
Medications										
Concomitant medications		•				•			•	•
1 st study drug		•								
Drug dispense		•				•			•	
Drug return + accountability						•			•	•
Efficacy Outcomes										
Ischemic stroke, ICH, fatal		•	•	•	•	•	•	•	•	•
stroke, intracranial hemorrhage,										
MI, STE, and all-cause mortality.										
Modified Rankin Score	•									•
MOCA	•									•
Safety Outcomes										
Major hemorrhage		٠	•	•	٠	•	•	•	•	•
Other adverse events		•	•	•	•	•	•	•	•	•
Vital signs/BP readings	•	•	•	•	•	•	•	•	•	•
PHRI Highly Confidential	Version 4.0, Sept 19/2017									